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Enrichment of CD34+ stem cells
Overcome the challenges of HSCT

As published, application of stem cell boost 
was applied independent of donor type and 
transplantation approach, also after failed previous 
therapy with growth factors. Clinical results show a 
72–100% rapid and sustained lineage recovery with low 
rates of GVHD, even in high risk and mixed chimerism 
patients. Three years overall survival rates of 40–63% 
were reported.1⁰ – 1⁶ In addition, immune reconstitution 
of all major lymphocyte populations was shown to be 
improved in 80% of the cases within four weeks.1⁷

Other approaches like SCB as prevention of PGF 
after post-transplantation cyclophosphamide (PTCy) 
or treatment of mixed chimerism of secondary 
immunodeficiency (SID) patients after reduced 
intensity conditioning (RIC) HSCT are currently 
being investigated.1⁸,1⁹

Overall 
response 

Complete 
response

aGVHD cGVDH Survival rate, 
median follow 
up 42 months

80% 72% 17% 18% 54%

Table 1: Efficacy and safety of CD34+ selected SCB for PGF after 
allo-HSCT, from seven studies (N = 209) adapted from Shahzad, M. et al. 
(2021).2⁷

Figure 1: Connecting CliniMACS CD34 Reagents to the CliniMACS 
Prodigy.

Stem cell boost (SCB) – rescue therapy 
for poor graft function (PGF)
PGF is a complication after allogeneic HSCT, occurring 
in 5–27% of the cases.⁹ It is associated with increased 
morbidity and mortality due to severe infections, 
hemorrhagic complications, and organ failure caused 
by iron-overload. A boost of selected CD34+ stem cells 
from the initial donor, fresh or cryopreserved, without 
any further conditioning and GVHD prophylaxis, 
has been described as an option to overcome 
persistent PGF.1⁰

The scope of hematopoietic stem cell transplantation 
(HSCT) keeps expanding from malignant to non-
malignant diseases. However, severe side effects like 
graft-versus-host disease (GVHD), infections, and poor 
graft function remain challenges of the treatment. We 
developed our CliniMACS Systems for GMP-compliant 
cell depletion and enrichment strategies to help 
clinicians overcome these challenges.

Passive T and B cell depletion
The immunomagnetic in vitro enrichment of CD34+ 
cells, using the CliniMACS System, is a very potent and 
robust technology for T cell depletion. Studies have 
shown 10⁴ to 10⁵-fold depletion rates1, leading to an 
effective GVHD prevention.2 – ⁵ In the US, the CliniMACS 
CD34 Reagent System was registered as sole GVHD 
prophylaxis in allogeneic HSCT, from an HLA-identical 
sibling donor in adult patients with acute myeloid 
leukemia (AML) in first complete remission. This 
technique has been widely used for more than two 
decades and is continuously improving in terms of 
full automation on the CliniMACS Prodigy.⁶ However, 
the use of CD34+ cell enrichment as GVHD prevention 
strategy, may contribute to delayed immune 
reconstitution and higher non-relapse mortality 
(NRM).⁷ Yet, the addition of memory T cells to the 
graft may solve this challenge. Memory T cells were 
shown to support the immune reconstitution and 
significantly improve the NRM rate, while maintaining 
excellent GVHD prevention.⁸
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Poor graft function

Measures to diagnose PGF:  two or three 
cytopenias >2 weeks, after day +28 in the 
presence of donor chimerism >5%
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The haplo-cord approach
CD34+ cell enrichment has also been applied in 
combined haplo-cord transplantations, in which 
a CD34+ cell-enriched haploidentical transplant 
bridges the gap until the primary engraftment 
of the cord blood transplant takes place. 21 – 23 
As described, the idea of a combined haplo-cord 
transplantation is based on the observation that 
engraftment after haploidentical transplantation 
occurs faster than after cord blood transplantation. 
To provide the benefit of faster engraftment, the 
patient receives a bridging haploidentical transplant 
together with the cord blood at the same time. 
Clinical data show that with this approach even cord 
blood units containing very low stem cell numbers 
can be transplanted successfully and lead to sustained 
engraftment.21 – 23

CD34+ cell enrichment 
in autologous HSCT
CD34+ cell enrichment was originally developed 
for passive tumor cell depletion from autologous 
stem cell grafts. Currently, the technique is used 
for some tumors of early childhood24,25 or non-
Hodgkin lymphoma and other diseases in adults.2,3 
Furthermore, CD34+ cell enrichment has been used 
to deplete autoreactive cells from stem cell grafts for 
severe refractory autoimmune diseases, like systemic 
lupus erythematosus and systemic sclerosis.⁴,⁵,26
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After active T and B cell depletion, the graft contains 
CD34+ stem cells, CD34– stem cells, other progenitor 
cells, natural killer (NK) cells, and other members 
of the innate immune system that might have 
engraftment facilitating effects. Several strategies 
for depletion of distinct T cell subsets have been 
developed, such as the CliniMACS TCR α/β/CD19 
Depletion System.28,29

Active depletion – 
TCRα/β/CD19 depletion
The process results in the depletion of alloreactive 
TCRα/β+ T cells. At this, various cell populations like 
stem cells and immune effectors cells are retained 
in the cellular product. Immune effector cells, such as 
NK cells and the TCRγ/δ+ T cells, are reported to induce 
GVL/T effects while the potential risk of inducing 
GVHD may be reduced.30,31

TCRγ/δ+ T cells – a fascinating cell type
Their unique set of functions include the ability 
to directly lyse infected or stressed cells, the 
production of cytokines and chemokines, and 
antigen presentation comparable to dendritic cells. 
Furthermore, they are thought to be highly effective 
against tumor cells and common infections.

Results from clinical applications
First clinical results using TCRα/β or TCRα/β/CD19 
depleted stem cell grafts were published in 2011 
by Lang et al., from the Children’s Hospital University 
Tübingen, Germany.32 Since then, the number of 
publications has increased tremendously. 
The technique has been applied in:

•	 malignant and non-malignant diseases

•	� myeloablative and reduced intensity 
conditioning regimens

•	 pediatric and adult patients

•	� settings with reduced or no post-transplant 
immune suppression

•	 haploidentical and matched unrelated HSCT

(see references 30–40)

Antigen-presenting cell

MHC I or II
Antigenic peptide

α and β chains

Distinct 
molecules

TCRα/β+ T cell TCRγ/δ+ T cell

γ and δ chains

Figure 2: T cell receptors of TCRα/β+ and TCRγ/δ+ T cells. 
One major difference lies in the T cell receptor which is composed 
of different chains, α and β or γ and δ. TCRγ/δ+ T cells are not activated 
by MHC-presented antigens, which might contribute to the low 
alloreactivity of TCRγ/δ+ T cells. These cells become activated by 
structures of bacterial walls or heat shock proteins, for example.

Rome33 Newcastle34 Utrecht35

CD34+ stem cells ×10⁶/kg 15.8 17.8 6.1

TCRαβ+ T cells ×10³/kg 40 3.3 20

TCRγ/δ+ T cells ×10⁶/kg 9.4 n/a 5.1

NK cells ×10⁶/kg 38.2 5.15 18.4

CD20+ B cells ×10⁴/kg 4 4 41.3

No. of patients 23 25 35

Table 2: Graft composition of haploidentical HSCT from three 
different sites.

The observed rates for primary engraftment are 
described as ’fast’ in various publications, with ten 
to 16 days for neutrophil recovery.33,36 – 40 Also, the 
immune reconstitution data are rated as ’remarkably 
fast’ by Balashov et al.38 Bertaina et al.33 published the 
clinical results from 23 children with non-malignant 
disorders, receiving haploidentical HSCT and reported 
a two-year probability of disease-free survival of 91.1%. 
In a study with an adult patient population suffering 
from high-risk leukemias, it was shown that infusion 
of grafts depleted of TCRα/β+/CD19+ cells was safe 
and effective, resulting in rapid donor hematopoietic 
engraftment and early expansion of donor-derived 
T lymphocytes.37

Active T and B cell depletion
Prevention of GVHD
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High rates of disease-free survival, overall survival, 
and GVHD-free-relapse-free survival rates were 
observed in the company initiated multicenter 
prospective trial. Included were heavily pretreated 
adult and pediatric patients with malignant and 
non-malignant diseases using reduced-intensity 
conditioning regimen. The results showed a fast 
reconstitution of TCRγδ+ T cells and NK cells in the 
early posttransplant period, which translated into 
a favorable incidence of infectious complications. 
The low rate of 10% acute graft-versus-host disease 
(aGVHD) and no cases of grade III–IV aGVHD 
impressively highlights the strength of ex vivo 
TCRα/β+/CD19+ depletion.40 
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Memory T cells provide immunity against many viral 
infections that the donors have experienced during 
their lifetime. In contrast to naive T cells, memory 
T cells are less alloreactive in an allogeneic HSCT 
setting.41 – ⁴3 CliniMACS CD45RA-depleted cell products 
have been used to treat and prevent opportunistic 
infections and to enhance immune reconstitution in 
the setting of allogeneic HSCT.43 – 45

CD45RA is an isoform of the CD45 family. It is present 
on naive T cells, on other leukocytes, and on some 
parts of hematopoietic stem cells in mobilized 
leukapheresis products. CD45RA is a proven marker 
to deplete alloreactivity in one step while central and 
effector memory cells are preserved.⁴1,43,46 – ⁴⁸

Graft engineering approach on 
an ex vivo T cell depletion platform
The intention of an ex vivo T cell depletion strategy is 
to provide grafts consisting of stem cells, combined 
with memory T cells, depleted of alloreactive naive 
T cell. The CliniMACS Platform allows for various 
combinations. 

•	� The combination of CD34+ cell enrichment and 
subsequent CD45RA+ cell depletion from the 
CD34-negative cell fraction of the same mobilized 
leukapheresis products, has first been described 
by Marie Bleakley et al.41 This approach has been 
used in different transplantation settings, as 
matched related and haploidentical transplantations 
(Seattle, Madrid, Paris).⁸,⁴3,50,51

•	� Researcher from St. Judes Children’s Hospital 
combined a CD34 enriched graft with CD45RA+ 
depleted memory T cells that where obtained 
from an additional leukapheresis product. In this 
treatment protocol, CD56+ enriched NK cells were 
added as well.52,53

•	� Other researchers developed strategies in which 
TCRα/β-depleted grafts were combined with 
CD45RA-depleted memory T cells. This approach 
was mainly used in haploidentical transplantation 
settings.54

Table 3: Log depletions obtained by CliniMACS Plus CD45RA Depletion 
of mobilized leukapheresis products.⁴1,42,49

Log depletion Leukapheresis product

4.7 (naive T cells) (Bleakley, 2014)

4.4 (3.4–4.7; CD45RA+ cells) (Teschner, 2013)

3.6 (2.3–3.95; CD45RA+ cells) (Triplett, 2015)

Manufacturing of memory T cell products
A versatile concept for transfering immunity
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Donor Lymphocyte Infusion (DLI) – 
memory T cells posttransplant
DLIs, depleted of CD45RA+ cells, have been infused 
posttransplant as infection prophylaxis. This approach 
might be applied in combination with any kind of 
GVHD prophylaxis, such as ex vivo or in vivo T cell 
depletion strategies. 

•	� The children’s hospital in Moscow, Russia, reported 
on prophylactic infusions of memory T cell DLI, 
depleted of CD45RA+ cells, after receiving a TCRα/β- 
depleted haploidentical transplant. The patients 
received up to three infusions in monthly intervals.44

•	� Prophylactic infusions of memory T cells for patients 
receiving T cell-depleted grafts from identical 
sibling donors have also been reported for the Duke 
University Medical Center, US.55 

•	� In a study from Milan, Italy, patients received 
prophylactic memory T cell infusions after treatment 
with a haploidentical transplant that was based on a 
post-cyclophosphamide based GVHD prophylaxis.56

The use of memory T cells to treat active drug-resistant 
infections was reported too. The treatment of active 
infections after haploidentical HSCT in steroid-
refractory cases has been demonstrated in several case 
reports. In these cases, the memory T cell products 
were obtained from original stem cell donors.⁴5,57

Memory T cells in COVID-19
It was demonstrated that donor cells in a non-
transplant setting can be helpful to overcome 
infections. Antonio Perez and his collaborators 
developed a method for delivering cell therapy 
products to COVID-19 patients. Using CliniMACS 
CD45RA Depletion, cell products were generated 
that are stored within a COVID-19 biobank from 
convalescent donors.58 The clinical use of these cells 
has been reported within a phase I clinical trial.59
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Antigen-specific T cells can be enriched using the 
CliniMACS Cytokine Capture System(CCS) (IFN-gamma) 
Technology. The CliniMACS Prodigy CCS (IFN-gamma) 
System allows for a fully automated specific labeling 
and enrichment procedure for antigen-specific IFN-γ 
secreting CD4+ and CD8+ T cells. The specificity of 
enriched T cells can be determined by choosing the 
respective MACS® GMP PepTivator® Peptide Pools. 
A growing repertoire of PepTivators for various viral 
antigens like AdV, BKV, EBV, and HCMV is available. 
Additionally, by using MACS GMP PepTivator NY-ESO-1 
or WT1, cancer antigen-specific T cells may also 
be isolated.

Treatment of drug-resistant 
infections after allogeneic HSCT
Published clinical data are available for patients 
suffering from CMV, AdV, BKV, and EBV infections 
after receiving allogeneic HSCT. In these cases the 
infections could not be resolved by standard antiviral 
treatment. Initially, cells were obtained from the 
original stem cell donor.⁶⁰ – ⁶3 Today, an increasing 
number of reports show the possibility of using 
third-party donor-derived cell products that can 
provided different types of biobanks.⁶4,⁶5 Currently 
a multi-national clinical phase III trial is investigating 
efficacy and safety of adoptive T cell transfer in 
immunocompromised individuals.⁶6

Treatment of patients after 
solid organ transplantation
Based on the experiences with HSCT patients, new 
strategies have been developed, using third party 
donor-derived cell products for patients post solid 
organ transplantation. Case reports are available for 
EBV-related lymphoma that has been treated with CCS 
derived antigen-specific T cells.⁶⁷,⁶⁸

SARS-CoV-2 specific T cells 
against COVID-19 disease
Several groups have developed manufacturing 
processes for cell products from convalescent donors, 
targeting SARS-CoV-2 infections. Wing Leung and 
his co-workers describe a process for flexible and 
rapid manufacturing of virus-specific T cells (VST) 
once a donor is available.⁶⁹ Cooper et al. describes a 
process that starts with the enrichment of VSTs using 
the CliniMACS Cytokine Capture System. A culturing 
step is added to increase the harvest of VST. The final 
products can be provided within a biobank.⁷⁰ First 
phase I clinical trials have been started.⁷1,⁷2

              D
onor screening                                                                                                              

          
        

       
      

      
     

     
     

     
 Q

ualit
y c

on
tr

ol

    
    

    
    

     
     

     
     

      
      

    L
abeling with                                                                                               Labeling with                                                                             

   
   

 A
nt

ig
en

-s
pe

ci
fic

 st
im

ul
at

io
n 

    
    

    
    

     
     

     
     

     

    
    

    
     

     
     

     
     C

atchmatrix Reagent                   Secretion period                     Enrichm
ent Reagent                  Enrichm

ent

Preparation  
of starting
material

Process time: 12 hours

Final cell 
product

Figure 3: Overview of the automated workflow steps of the CliniMACS 
Prodigy CCS (IFN-gamma) System. Virus-specific T cells can be enriched 
based on their secretion of IFN-γ after restimulation with appropriate 
antigens.

Enrichment of antigen-specific T cells
Enable anti-viral immunity



PepTivator Peptide Pools are 
optimal for effective stimulation 
of antigen-specific T cells.
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The CliniMACS Plus System automates cell separation 
for clinical-scale enrichment of target cells or 
depletion of unwanted cells from blood products. 
Cell separation occurs in a closed and sterile system. 
A single-use tubing set with its integrated separation 
column enables the instrument to separate target cells 
from unwanted cells and collect the fractions 
in different bags.

CliniMACS® Plus System
Automated cell separation for clinical-scale 
cell enrichment or depletion

Automated cell separation
The magnet unit houses the separation column 
for immunomagnetic cell separation

Controlled pathways
Pinch valves automatically close and open for  
a controlled fluid pathway within the tubing sets.

Flow of liquids
A peristaltic pump takes care 
for the precise flow of liquids.

Sterile connections
Cellular starting material and buffers 
are connected for cell processing.

Ease of use
The software guides the user 
through interactions.
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Key features of the 
CliniMACS Plus System
•	� Clinical-scale cell separation

•	� Automated separation procedure

•	� Compatible for use in a GMP setting

•	� Closed system, using CE-marked medical devices

•	� Enrichment or depletion of dedicated 
cell populations

•	� Reproducible high purities, excellent yields 
and profound depletion efficiencies

•	� Established platform for ex vivo T cell depletion 
since 1997

Modular platform
•	� Variable cell sources

•	� Wide range of applications

•	� Versatile separation strategies

Cell preparation bag

Magnet and separation column

Enrichment of cells Depletion of cells

Figure 5: Workflow on the CliniMACS Plus System. Target cells are 
always collected in the left-most bag.
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CliniMACS Prodigy® Platform
Master the complexity of cell processing

Centrifugation and cell processing
The CentriCult™ Unit is a multi-purpose entity 
for cell processing and cell cultivation.

Controlled pathways
Pinch valves automatically close and open for  
a controlled fluid pathway within the tubing set.

Flow of liquids
The peristaltic pump directs accurate volumes  
of liquids through the tubing set.

The CliniMACS Prodigy integrates all cell processing 
steps, including sample preparation, cell washing, 
density gradient centrifugation, magnetic cell 
separation, cell activation, genetic modification, 
cell culture, and cell product formulation. The fully 
automated, sensor-controlled processes provide a 
high level of standardization and reproducibility. 
Hands-on time is reduced substantially.  

As all steps are performed in single-use, closed 
and sterile tubing sets, the instrument also reduces 
cleanroom requirements significantly. In combination 
with the wide variety of CE-certified medical 
devices and MACS GMP Products manufactured by 
Miltenyi Biotec, the CliniMACS Prodigy facilitates the 
implementation of GMP-compliant cell processing.

Network connectivity
The instrument is equipped to be 
connected to your local area network for 
process surveillance and data export.
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Easy to operate
The user-friendly software guides the 
operator through interactions. Predefined 
processes and the flexible programming 
suite allow for convenient and tailored cell 
manufacturing. 

Safe and sterile connections
Reagents, buffers, media and other 
materials can be easily connected via 
sterile spike ports or sterile welding. 

Automated cell selection
The magnet unit houses the separation 
column for immunomagnetic cell 
separation.

Sterile sealing 
The MACS Tube Sealer is used for sealing 
and sterile removal of tubing components 
such as QC pouches.

Effortless documentation
CliniMACS Materials are scanned for 
identification and documentation with the 
bar code reader.
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